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As a user (Product Manager, Analyst, HiPPO) of AB tests or a designer/builder of AB tests and
systems, do you have a nagging feeling that though A was statistically better than B, the difference
wasn’t large enough to be important? Do you have doubts about the business impact of the test
outcome? Do you want to set a single-valued business or revenue goal (e.g. 10% better) and have
a definite recommendation made to you instead of dealing with “we are 90% confident that A is
11.1% better than B”? Do you feel overwhelmed by the “test everything” approach becoming
increasingly prevalent in Tech? If you answered yes to any of these questions, then read this blog.

First, we need to go beyond asking simply whether “A is better than B” to asking whether “the
difference between A and B is important enough to be actionable”. Consider an example: The
Optimizely book on A/B testing describes a test comparing a page with a static ad to one with a
video1. The variant with the video was better in terms of both click-through and conversion rates,
but the costs of producing the video and displaying it were deemed “too high” to launch the video
version at scale. So in addition to being statistically significant, the difference has to be important
enough to recommend proceeding2.

Second, this difference has to be evaluated not in terms of the usual probability but in terms of a
revenue or business metric, which may not be simply related to the measured probability. E.g.,
in order to trigger a recommendation, do we want the difference between success probabilities to
exceed 0.1 —i.e. pA − pB > 0.1— or do we want the success probability to lift by 20% —i.e.
pA > 1.2 ∗ pB? Different metrics will lead to different outcomes. If pB happens to be 0.5, even
though pA = 0.6 has the same value for both a difference of 0.1 and a lift of 20%, the confidence
levels associated with the two propositions can be quite different.3

Third, decision makers do not want to deal with statements about “confidence levels in the differ-
ence”. The goal of our analysis is to provide the test owner with a definite recommendation about
choosing A or B4 based on a single “acceptance value” for a pre-selected business metric.

As a collateral benefit, you may find that the requirement of calculating a minimum business gain
before starting a test will magically reduce the number of tests, culling out the more frivolous ones.

1“Fail Fast and Learn”, pg. 79, A/B Testing, Dan Siroker and Pete Koomen, Wiley (2013)
2See http://shopperscientist.com/archive/views/28may95.html and http://www.med.

uottawa.ca/sim/data/Statistical_significance_importance_e.htm for lengthier discussions.
3Note that the choice of comparison metric is an issue that arises only when we want to quantify the comparison.

If we were only interested in whether A is better than B, then any metric (as long as it is monotonic in pA and pB)
would do. The choice of metric becomes important when we are interested not just in whether A is better than B, but
in addition, by how much.

4Paraphrasing from Klugman et al “Loss Models”, 2nd Ed. Wiley (2004), pg. 419: “...the process must end with a
winner. While qualifications, caveats etc. are often necessary, a commitment is required.” on the part of the analyst.
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We will illustrate our approach to the first three issues by analysing the data for binary outcome
A/B tests, which we briefly describe. In a binary experiment, each trial has only two possible
outcomes, a success (1) or a failure (0). A population being experimented on has a “true” or
intrinsic probability of success p which is to be inferred from the results of the test. In an A/B
test there are two populations or branches, each of which is exposed to a different treatment. The
populations have intrinsic success probabilities pA and pB. After a period of time (pre-determined
by “power” calculations or otherwise), the experiment will yield a count of the trials and successes
in each branch, (nA,mA) and (nB,mB). From this data we infer a function that represents the
likelihood of (pA, pB).

We’ve taken a Bayesian approach since it turns out to be much better suited for general metrics. We
use the data from the experiment to construct the posterior probability distribution (or likelihood)
of (pA, pB). Fig. 1 is the two dimensional space of intrinsic probabilities {(pA, pB)}, on which

Figure 1: Contour Plot of the Likelihood of (pA, pB) for (nA,mA, nB,mB) = (12, 10, 12, 7). The
contours correspond to points of equal likelihood. The insides of high-value contour lines represent
regions of high likelihood, with the peak at (10/12, 7/12).

we’ve shown a contour plot of the likelihood function, see the caption for additional explanation.

The next issue is that of finding a metric which reflects a business interest. Consider a Binary A/B
test in which the probability being measured is the page transition probability p: that of moving to
any other page on the website as opposed to leaving the website or otherwise ending the session.
The business impact is in fact not proportional to an increase in the page transition probability. We
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know that on average revenue is proportional to clicks, conversions or other monetizing actions,
and that the number of such actions is proportional to the number of opportunties to act, which
in turn is proportional to the pages visited on the website. How is the number of page visits PV
related to the page transition probability p? Some thought shows that the average number of pages
visited per user-session is

PV = p+ p2 + p3 + ... =
p

1− p
(1)

which is simply the odds ratio corresponding to the probability5!

The same metric also occurs (surprisingly) in the context of loans: For a lender, the expected return
on a loan is proportional to the number of loan payments made before a default. If p (related to
the FICO score) is the probability of making any single loan payment, then Eq. 1 represents the
average number of payments before default. Since p is close to 1, even a small increase in p leads
to a large increase in expected return on the loan, and a corresponding drop in the APR the lender
can afford to offer.

Different metrics (and their values) define different lines in two-dimensional probability space
{(pA, pB)}. Fig. 2 is 2D probability space as in Fig. 1 where in addition to the contours of the
likelihood we have plotted the lines defined by a metric value for each of three metrics: Probability
Difference, Probability Lift and Page Views Lift.

If we were to know pA, pB with certainty, it would be a point in the above probability space.
We would then recommend A over B if the observed value for the metric exceeded the chosen
minimum value —equivalently, if the observed point lies below and to the right of the chosen
metric line.

Note however that we do not have a point (pA, pB) that corresponds to our knowledge of the
success probabilities, instead we have the likelihood function, which we have superposed on the
metric lines in the figure above. Thus, we can ask for the (total) likelihood that the metric exceeds
the value M , equivalently, that (pA, pB) lies below (and to the right of) the metric line for M . This
is simply the volume of the likelihood function below the metric line for M , and is the credibility
that the metric exceeds M .

(As we can see from the figure, the different metric lines cut the likelihood function on different
sides of the peak, and so the calculated credibilities will be different and the resulting recommen-
dations can be contradictory.)

So for any value of the metric M we can do a numerical integration to obtain its credibility
Cred(M)6. For concreteness, consider experimental results (nA,mA) = (200, 40) and (nB,mB) =

5More on this in a separate blog.
6We analytically reduce the double integral involved to 1 dimension, and then do a cute trick that allows for an

easy numerical integration.
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Figure 2: Metric Lines and Likelihood Function on 2D probability Space (pA, pB). The credibility
of a metric is the volume of the likelihood function below the metric line.

(100, 15). The analysis we’ve described so far provides a Page Views Lift vs. Credibility curve
based on the experimental data, of the form in Figure 3. which as expected is sigmoidal. Thus, we

Figure 3: Page Views Lift vs. credibility

use the data to infer not just which treatment is better, but in addition by how much and how certain
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we are of this. In the conventional approach, we would base our recommendation on a decision
criterion like “Page Views Lift of 8% at 95% credibility”, and if the point (95, 0.08) is below and
to the left of the above credibility curve in Figure 3 we would recommend A over B.

However, from the perspective of an expected business return, this process is ambiguous. Specifi-
cally, the above decision point lies above the curve and so “A is not better than B”. But the decsiion
point also corresponds to an expected return of 0.08 ∗ 0.95 = 0.075, which is equivalent to a “Page
Views Lift of 10% at 75% credibility”, which does lie below the credibility curve and thus implies
a recommendation of “A is better than B”. This still does not help either us or the HiPPO, who
furthermore wants to express her or his decision criterion as a single value of expected return.

Our approach to resolving this conundrum is to interpret M ∗ Cred(M) as the expected minimum
value of M . We plot this as a function of the credibility in Figure 4. This expected minimum value

Figure 4: Expected Minimum Page Views Lift vs. Credibility

has a maximum. The question of what recommendation to make is then reduced to comparing
the experimentally determined maximum expected minimum value to the test owner’s single value
MMin for an expected return: if the max-min is lower than the MMin then the variant is not better
than the control. Conversely,

If Max(Expected MinimumM) > MMin, then we recommend A over B.

Let’s recapitulate this last part. The test owner has selected a metric (let’s say Page Views Lift) and
a threshold value MMin by which A has to exceed B in order for the results to be called in favor of
A. From the data, for every value of the metric M we can calculate the credibility (Fig. 3). Note
that Cred(M) is the credibility that the minimum true value of the metric is M . We multiplied M

5



by its credibility, this is the expected minimum value of the metric. As a function of the credibility
(Fig. 4), this expected minimum itself has a maximum. Clearly, if the maximum expected minimum
value is less than the minimum acceptable value MMin, we cannot call the results in favor of A. If
the opposite holds, we choose to call the results in favor of A.

To summarize, we’ve shown two reasons to go beyond the “Is A better than B?” approach to AB
testing: One, we have to take the importance of the difference between A and B into account, and
two, we have to quantify the difference in terms of a business goal. Further, our approach allows the
test owner to establish a single metric and value as a decision criterion, then our analysis provides
a simple “A/B” recommendation, without any “confidence levels” clouding the issue.
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